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Abstract

Due to its low cost, robustness, flexibility and ubiquitous nature, cloud computing is changing the
way entities manage their data. However, various privacy concerns arise whenever potentially sensi-
tive data is outsourced to the cloud.

This paper presents a novel approach for coping with such privacy concerns. The proposed
scheme prevents the cloud server from learning any possibly sensitive plaintext in the outsourced
databases. It also allows the database owner to delegate users to conducting content-level fine-grained
private search and decryption. Moreover, our scheme supports private querying whereby neither the
database owner nor the cloud server learns query details. Additional requirement that user’s input be
authorized by CA can also be supported.
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1 Introduction

Cloud computing involves highly available massive compute and storage platforms offering a wide range
of services. It provides a way to deliver application-as-a-service over the Internet. One of the most pop-
ular and basic cloud computing services is storage-as-a-service (SAAS). Initially deployed as a means
of helping Internet giants cope with explosive user demand, SAAS, in place of traditional storage infras-
tructure, is shaping the way organizations manage their data. SAAS’s low cost and performance fuels
the success of cloud computing pioneers, such as Amazon and Google. For example, Amazon has been
offering its “S3 storage service” for several years, while Google began offering “Google Storage for De-
velopers” in Spring 2010. As a value-add layer over the simple storage service, some cloud-computing
companies provide cloud database management systems to facilitate data maintenance, e.g. Amazon
SimpleDB.

From the customer’s point of view, there are several benefits of SAAS. First, the cost is very low.
Instead of the outmoded storage-area network (SAN) concept, SAAS can be provided by a mesh of
interconnected Linux servers with cheap disks managed by a distributed filesystem. Recent studies show
that the cost per GB of enterprise SAN storage is around $20/GB, whereas, cloud computing brings the
cost down to as low as $1/GB [25]. Second, storage maintenance is significantly simpler. Professional
SAAS providers offer customer service (via phone and Internet) on a 24/7/365 basis. Third, storage
access is robust and easy: SAAS is based on data centers around the globe and data can be accessed
anywhere/anytime over the Internet. Data is geographically replicated and customers do not need to
worry about data loss due to catastrophes. Finally, storage is available on demand. Storage space can be
dynamically allocated thus eliminating the need for customers to plan ahead.

We consider two examples to demonstrate SAAS application scenarios. The first is health care
providers (e.g. hospitals) that maintain databases of patient medical records. Outsourcing these databases
to a cloud server can be a major step towards cutting health care cost as part of the Health Care Reform
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Act [4]. The second example is educational institutions (e.g., universities) that maintain records of all
current and past students. Universities confronted with financial pressures have the incentive to cut costs
by outsourcing student databases to cloud servers. In these two examples, health care providers and
educational institutions are database owners. Their constituent entities (e.g., departments or employees)
query the outsourced databases for patient or student information. We call these entities database users.
And we simply call servers in the cloud, which store the database, cloud server.

On one hand, due to its benefits, companies are excited by the public debut of SAAS. On the other
hand, companies are reticent about adopting SAAS. One of the major concerns is the privacy. In case
of the health care provider scenario, a personal medical record contains one’s medical history, details
about one’s lifestyle (e.g. smoking), and family medical history. It may also include one’s laboratory
test results, medication prescribed and reports indicating the result of operations. Therefore a personal
medical record is considered by a patient to be highly sensitive and should be kept in confidentiality as
per public law [3]. In case of educational institution scenario, a student’s record which includes aca-
demic transcripts, general counseling information and financial situation such as loan collection records
is considered to be highly sensitive by students and therefore required to be kept confidential according
to federal law [2]. Moreover, for the above two examples, database owners should have access control
over their database. For example, a diabetes department physician should not access cosmetic surgery
department’s patients records without authorization. A biological department staff should not access
arts department students’ record without approval. Outsourcing data may mean database owner loses its
confidentiality control over data and access control over users.

Now we start to clarify different types of privacy challenges during the deployment of cloud service.
From the perspective of the database owner, three challenges arise.

• Challenge 1: how to protect outsourced data from theft by hackers or malware infiltrating the cloud
server? Encryption by the cloud server and authenticated access by users seem to be a straightfor-
ward solution. However, careful consideration should be given to both encryption method and its
granularity.

• Challenge 2: how to protect outsourced data from abuse by the cloud server? A trivial solution
is for the owner to encrypt the database prior to outsourcing. Subsequently, users (armed with the
decryption key(s)) can download the entire encrypted database, decrypt it and perform querying
in situ. Clearly, this negates most benefits of using the cloud. A more elegant approach is to
use searchable encryption. Unfortunately, current searchable encryption techniques only support
simple search (attribute=value), as opposed to complicated SQL, queries.

• Challenge 3: how to realize content-level fine-grained access control for users? This challenge
is even harder to solve as it requires variable decryption capabilities for different users. Even
trivial solution to the second challenge does not solve this challenge as it gives each user equal
decryption capability (same decryption key). An ideal solution would entail the database owner
issuing a given user a key that only allows the user to search and decrypt certain records.

From user’s perspective, three more challenges arise.

• Challenge 4: how to query the cloud server without revealing query details? Learning user’s
query details means learning user’s possibly sensitive search interest. In addition, by learning user
queries, the cloud server gradually learns the information in the encrypted database.

• Challenge 5: how to hide query contents (e.g., values used in “attribute=value” queries) from the
database owner? For the database owner to exercise access control over its outsourced data, a
user should first obtain an approval from the database owner over its query contents. However,
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in some cases, the user may want to get the approval without revealing its query contents even to
the database owner. This is the case when the user happens to be a high-level executive who is
automatically qualified to search any value and is not willing to reveal query to anyone.

• Challenge 6: how to hide query contents while assuring database owner the hidden contents are
authorized by some certificate authority (CA)? Such challenge happens, for example, when the
user is FBI who does not want to reveal the person it is investigating while database owner wants
to get some confidence by making sure FBI is authorized by the court to do this investigation.

To address the above challenges, we need a scheme for the scenario shown in Fig. 1. In the initial
deployment phase, the owner encrypts its database and transfers it to the cloud server. The encryp-
tion scheme should guarantee that no plaintext is leaked in the encrypted database, thereby addressing
challenges 1–2. When a user poses an SQL query, such as:

“select from sample where ((last name=‘Lobb’ AND birth date=‘3/26/1983’) OR blood type=‘B’)”

it first obtains a search token and decryption key from the database owner. Then, the user supplies
the search token to the cloud server who uses the token to search the encrypted database. Matching
encrypted records are returned to the user who finally decrypts them. The search token and the decryption
key should only allow the user to search and decrypt records meeting the conditional expression in the
specific query, therefore addressing challenge 3. The search token should not reveal the conditional
expression specified by the user, therefore solving challenge 4. Further, the user should be able to get
the search token and decryption key without letting database owner know the query contents in order
to solve challenge 5. Finally, to solve challenge 6, database owner, even though not knowing the query
contents, should be able to verify if these contents are authorized by a CA.

This paper extends its previous conference version [23] by including detailed security proofs. In this
paper, we present a new scheme that addresses aforementioned requirements. It relies on attribute-based
encryption [20] and blind Boneh-Boyen weak signature scheme [5]. In fact, we amend the standard
attribute-based encryption to make it privately searchable in the cloud computing scenario. Furthermore,
we use the blind Boneh-Boyen signature scheme to let a user obliviously retrieve a search token and
decryption key. Moreover, blind search token and decryption key extraction procedure can be coupled
with CA authorization on user’s input.

This paper aims to make four contributions: First, we define the adversary and security model for
an encryption scheme aimed at the cloud database system. Second, we construct an encryption scheme
that protects data privacy and allows access control. Third, we develop techniques for a user to retrieve
search token and decryption key from database owner without revealing query contents. Fourth, we make
it possible that the database owner, without knowing query contents, can make sure these contents are
authorized by CA.

The rest of the paper is organized as follows. Sec. 2 overviews related work. Next, Sec. 3 defines
the function and security model. Then, Sec. 4 discusses some background issues. The new scheme
is presented in Sec. 5, followed by Sec. 6 that analyzes its performance. An in-depth performance
evaluation is shown in Sec. 7. Limitations of our scheme are discussed in Sec. 8. Finally, Sec. 9 concludes
this paper. A complete security proof is shown in Appx A.

2 Related Work

Private Information Retrieval and Oblivious Transfer: Private Information Retrieval (PIR) [17] allows
a user to retrieve an item from a server’s (public) database without the latter learning which item is being
retrieved. While PIR is not concerned with privacy of the server database, Oblivious Transfer (OT) [18]
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adds an additional requirement that the user should not receive records beyond those requested. Olumofin
and Goldberg [26] apply PIR/OT concepts to relational databases in order to hide user SQL queries from
the database server.

There are significant differences between these approaches and our work. First, these approaches
target a user/server scenario and it is unclear how to extend them to the cloud setting with the additional
requirement of protecting data from untrusted cloud server. Second, a user can query any items inside
the database and there is no way to enforce access control in these approaches.

Search on encrypted database: Searching on encrypted data (SoE), also known as privacy preserving
keyword-based retrieval over encrypted data, was introduced in the symmetric key setting by Song, et
al. [33]. This scheme allows a user to store its symmetrically encrypted data on an untrusted server
and later search for a specific keyword by giving the server a search capability, that does not reveal the
keyword or any plaintext. Its security and efficiency was later improved in [14] and [35]. Golle, et
al. [19] developed a symmetric-key version of SoE that supports conjunctive keyword search. Boneh, et
al. [9] later proposed a public-key version of encryption with keyword search (PEKS), where any party
in possession of the public key can encrypt and send encryption to an untrusted server, while only the
owner of the corresponding private key can generate keyword search capabilities. The server can identify
all messages containing the searching keyword, but learning nothing else.

Our work is different from SoE and PEKS since it supports flexible access control (any monotonic
access structure) on encrypted data, i.e. the database owner can issue a user a decryption key that only
decrypts data meeting a certain conditional expression. Also, our scheme supports oblivious (search
token/decryption key) retrieval.

Attribute-based encryption: Sahai and Waters [29] introduced the concept of Attribute-Based Encryption
(ABE) where a user’s keys and ciphertexts are labeled with sets of descriptive attributes and a particular
key can decrypt a particular ciphertext only if the cardinality of the intersection of their labeled attributes
exceeds a certain threshold. Later, Goyal, et al. [20] developed a Key-Policy Attribute-Based Encryp-
tion (KP-ABE) where the trusted authority (master key owner) can generate user private keys associated
with any monotonic access structures consisting of AND, OR or threshold gates. Only ciphertexts that
satisfy the private key’s access structure can be decrypted. Bethencourt, et al. [6] explore the concept of
Ciphertext-Policy Attribute-Based Encryption where each ciphertext is associated with an access struc-
ture that specifies which type of secret keys can decrypt it. Ostrovsky, et al. [27] extended [20] by
allowing negative constraints in a key access structure.

Our scheme is derived from that in [20]. However, compared to traditional ABE, there are several
notable differences. First, ABE only achieves payload hiding, i.e., attributes are revealed in plaintext,
while our scheme hides the attributes. Second, ABE does not support private search on encrypted data,
while our scheme does. Third, ABE does not support oblivious private key retrieval from the authority,
while our scheme does.

Predicate encryption: Predicate encryption can be considered as attribute-based encryption supporting
attribute-hiding. Ciphertexts are associated with a set of hidden attributes I. The master secret key owner
has the fine-grained control over access to encrypted data by generating a secret key sk f corresponding
to predicate f ; sk f can be used to decrypt a ciphertext associated with attribute I if and only if f (I) = 1.

Several results have yielded predicate encryption schemes for different predicates. Waters, et al.
constructed an equality tests predicate encryption scheme [34]. Shi and Waters [32] constructed a con-
junction predicate encryption scheme. In [31], Shi, et al. proposed a scheme for range queries. Boneh and
Waters [10] developed a scheme that handles conjunctions and range queries while satisfying a stronger
notion of attribute hiding. Katz, et al. [22] moved a step further by making predicate encryption support
inner products, therefore supporting disjunction and polynomial evaluation. Shi, et al. [30] noticed that
public key predicate encryption may inherently reveal the query predicate inside a token and proposed a
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Figure 1: Cloud storage architecture.
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Figure 2: Access tree example

symmetric key version that supports inner product that addresses this problem.
Our approach is different in several respects. First, no concrete private search scheme exists in pred-

icate encryption. Although a predicate-only version is enough for private search [22], requiring private
search on a cloud server and access control for users probably means that two separate implementations
of predicate encryption are needed. Second, our scheme supports more flexible access control; although,
range queries are not covered. Finally, no oblivious retrieval of decryption key for predicate encryption
exists so far.

3 Problem Definition

3.1 Problem Description

Fig. 1 shows the architecture of the envisaged cloud storage scenario. There are four entities: the cloud
server (S), the database owner (DO), the database user (U) and the certificate authority (CA). DO’s
database table consists of w attributes {α1,α2, . . . ,αw}. Let Ω = {1, · · · ,w}. For ease of description,
we assume that every attribute is searchable. Each record m includes w values: {vi}1≤i≤w with each vi

corresponding to attribute αi. Fig. 1 also illustrates a sample database. The first row describes attribute
names and each subsequent row denotes a record.
U may issue S any SQL query with monotonic access structure. By monotonic access structure, we

mean a boolean formula only involving ‘AND/OR’ combinations. We use an access tree (see Sec. 4.2
for details) to describe any monotonic access structure. In our context, the access tree describes a com-
bination of ‘AND/OR’ of attribute names, without specifying their values. For example, Fig. 2 depicts
one type of access tree corresponding to a conditional expression ((last name=? AND birth date=?) OR
blood type=?). If concrete values are supplied together with an access tree, a complete conditional ex-
pression can be defined. For example, if a value set (Lobb, 3/26/1983, B) is specified, the expression
will be ((last name=‘Lobb’ AND birth date=‘3/26/1983’) OR blood type=‘B’). We use Tγ to denote an
access tree constructed over a subset γ of Ω and use vγ to describe a set of values for Tγ to completely
define a conditional expression. A complete record can be viewed as vΩ. We use Tγ(vγ ,vγ ′) to test
whether a set of values vγ ′ satisfies the conditional expression defined by Tγ and vγ .

Our basic encryption scheme is a set of components: Setup, Encrypt, Extract, Test, Decrypt.
Before starting, DO runs Setup to initialize some parameters. Then DO runs Encrypt over each record
in its table to form an encrypted database. The encrypted database is exported to S (off-line) andDO can
insert new encrypted items later. Whenever U forms an SQL query, it runs Extract with DO to extract a
search token and decryption key. Then, U hands the search token to S and the latter runs Test over each
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encrypted record, in order to find matching records. After that, S sends matching records back and U
runs Decrypt to recover plaintext records. If additional requirement that DO learns nothing about query
content is needed, U can run BlindExtract instead of Extract with DO. If further requirement that U’s
query should be Authorized by CA is needed, U can engage in AuthorizedBlindExtract with DO. We
define each function in more detail below.

3.2 Basic Scheme Definition

The basic scheme includes following components:
Setup(1k): on input a security parameter 1k, DO outputs parameters params, DO’s master key mskDO.
Encrypt(DO(params,mskDO,vΩ)): DO on input params,mskDO and a record vΩ, outputs a ciphertext.
Extract(U(params,Tγ ,vγ),DO(params,mskDO)): U on input (params,Tγ ,vγ) and DO on input

(params,mskDO) engage in an interactive protocol. At the end, U outputs a search token tk(Tγ ,vγ )

and a decryption key sk(Tγ ,vγ ), and DO outputs (Tγ ,vγ).
Test(S(params, tk(Tγ ,vγ ),C)): S on input parameters params, a search token tk(Tγ ,vγ ) and a ciphertext

C = Encrypt(mskDO,v′Ω), outputs “yes” if Tγ(vγ ,v′Ω) = 1 and “no” otherwise.
Decrypt(U(params, tk(Tγ ,vγ )sk(Tγ ,vγ ),C)): U on input params, a search token tk(Tγ ,vγ ), a decryption key

sk(Tγ ,vγ ) and a ciphertext C = Encrypt(mskDO,v′Ω), outputs v′Ω if Tγ(vγ ,v′Ω) = 1 and ⊥ otherwise.

3.3 Blind Extraction Definition

In order to protect U’s query from DO, we need to replace Extract with a blinded version, called
BlindExtract.
BlindExtract(U(params,Tγ ,vγ),DO(params,mskDO)): U on input (params,Tγ ,vγ) and DO on input

(params,mskDO,Tγ) engage in an interactive protocol. U’s output is a search token tk(Tγ ,vγ ) and a
decryption key sk(Tγ ,vγ ), and DO’s output is Tγ .
Sometimes, it makes more sense to require U to prove that its input in BlindExtract is authorized

by a CA before U can get anything useful. In order to realize that, we introduce two other functions
Authorize and AuthorizedBlindExtract. Authorize helps a U get a commitment ψ and a signature σ
from a CA. In AuthorizedBlindExtract, DO is provided with Tγ ,ψ,σ while U can prove statements
about commitment ψ using zero-knowledge proof.
Authorize(U(params,Tγ ,vγ),CA(params,mskCA)): CA generates a commitment ψ over U’s input (Tγ ,

vγ), the randomness open used to compute ψ and a signature σ over ψ . CA’s output is
(Tγ ,vγ ,ψ,open,σ). U’s output is (ψ,open,σ).

AuthorizedBlindExtract(U(params,Tγ ,vγ ,ψ,open,σ),DO(params,mskDO)): U on input (params,
Tγ ,vγ ,ψ,open,σ) and DO on input (params,mskDO) engage in an interactive protocol. DO’s out-
put is (Tγ ,ψ,σ). If ψ = Commit((Tγ ,vγ),open) and VrfypkCA(ψ,σ) = 1, U’s output is a search
token tk(Tγ ,vγ ) and a decryption key sk(Tγ ,vγ ), and otherwise, U outputs ⊥.

3.4 Adversary Model and Security Requirement

In this paper, we assume the malicious adversary model (as opposed to semi-honest, a.k.a “honest-but-
curious”) . A malicious adversary can arbitrarily deviate from the prescribed protocols. We also assume
that U may collude with S . However, DO does not collude with any party. In Appx. A, we will prove
our scheme is secure against malicious adversary according to Def. 1, 2 and 3.

For the basic scheme, we define adversary’s advantage by defining a security game under chosen
plaintext attack in a selective set model, similar to [20].
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Definition 1. (Selective-Set Secure (IND-SS-CPA)). Let k be a security parameter. Above scheme
is IND-SS-CPA-secure if every p.p.t. adversary A has an advantage negligible in k for the follow-
ing game: (1) Run Setup(1k) to obtain (params,mskDO), and give params to A. (2) A outputs two
records m1, m2 to be challenged on (3) A may query an oracle OExtract(params,mskDO,Tγ ,vγ) such
that Tγ(vγ ,m1) ̸= 1 and Tγ(vγ ,m2) ̸= 1. (4) Select a random bit b and give A the challenge c∗ ←
Encrypt(params,mskDO,mb). (5) A may continue to query oracle OExtract(·) under the same condi-
tions as before. (6) A outputs a bit b′. We define A’s advantage in the above game as |Pr[b′ = b]−1/2|.

BlindExtract must satisfy two security properties: Leak-free Extract [21] and Selective-failure
Blindness [12]. Informally, the former means that a malicious U cannot learn more by executing the
BlindExtract with an honest DO than by executing Extract with an honest DO. Whereas, Selective-
failure Blindness means that a malicious DO cannot learn anything about U’s choice of vγ during Blin-
dExtract. Moreover, DO cannot cause BlindExtract to fail based on U’s choice. Now we formally
define Leak-free Extract and Selective-failure Blindness:

Definition 2. (Leak-Free Extract). BlindExtract protocol is leak free if, for all p.p.t. adversaries A,
there exists an efficient simulator such that for every value k, A cannot determine whether it is playing
Game Real or Game Ideal with non-negligible advantage, where
Game Real: Run Setup(1k). As many times asAwants,A chooses its Tγ ,vγ and executes BlindExtract(·)

with DO.
Game Ideal: Run Setup(1k). As many times asAwants,A chooses its Tγ ,vγ and executes BlindExtract(·)

with a simulator which does not know mskDO and only queries a trusted party to obtain tk(Tγ ,vγ ) and
sk(Tγ ,vγ ).

Definition 3. (Selective-Failure Blindness). BlindExtract is selective-failure blind if every p.p.t. ad-
versary A has a negligible advantage in the following game: First, A outputs params and a pair of
(T ,v1), (T ,v2). A random bit b is chosen. A is given black-box access to two oracles U(params,T ,vb)
and
U(params,T ,v1−b). The U algorithm produces local output sb = (tk(T ,vb),sk(T ,vb)) and s1−b =
(tk(T ,v1−b),sk(T ,v1−b)) respectively. If sb ̸= ⊥ and s1−b ̸= ⊥ then A receives (s0,s1). If sb = ⊥ and
s1−b ̸= ⊥ then A receives (⊥,ε). If sb ̸= ⊥ and s1−b = ⊥, then A receives (ε ,⊥). If sb = ⊥ and
s1−b = ⊥, then A receives (⊥,⊥). Finally, A outputs its guess bit b′. We define A’s advantage in the
above game as |Pr[b′ = b]−1/2|.

4 Preliminaries

4.1 Notation

Let {0,1}l denote the set of integers of maximum length l, i.e. the set [0,2l−1] of integers. We employ
the security parameters lϕ , lH where lϕ (80) is the security parameter controlling the statistical zero-
knowledge property, lH (160) is the output length of the hash function used for the Fiat-Shamir heuristic.
H(·) and H′(·) denote two distinct hash function. We use Enchom

pk and Dechom
sk to denote homomorphic

encryption and decryption (respectively) under public key pk (or secret key sk). We use Encsym
k and

Decsym
k to denote symmetric encryption and decryption under key k. We define Lagrange Coefficient as

∆i,S = ∏ j∈S, j ̸=i
j

j−i . Let Ω denote attributes index set, i.e. Ω = {1, · · · ,w}. DO’s private and public keys
are skDO and pkDO, respectively. server’s master key is mskDO. CA’s private and public keys are skCA
and pkCA.

11



Privacy-preserving Cloud Database Querying Lu, and Tsudik

4.2 Access Tree

We use T to denote a tree representing an access structure. T represents a combination of ‘AND/OR’
of attribute names without specifying their values, as shown in Fig. 2. An access structure Tγ defined
over a set γ of attributes, coupled with a set of values vγ defined over the same set, completely defines a
conditional expression (See Sec. 3.1 for example). We use Tγ(vγ ,v) to test whether another set of values
v satisfies the condition defined by Tγ and vγ . Each non-leaf node represents a threshold gate, described
by its children and a threshold value. Let numx be the number of children of a node x. The threshold
value associated with node x is denoted by kx that is either 1 or numx, depending on the threshold gate.
In case of an OR gate, kx = 1; in case of an AND gate, kx = numx. Each leaf node x is described by
an attribute with a threshold kx = 1. Standard tree data structures can be used to represent and store T .
Since Tγ is exposed to S in Test, to prevent S from learning database schema, each leaf node can store
an attribute index instead of the attribute name.

To facilitate working with the access trees, we define a few functions. We denote the parent of the
node x as parent(x). node(αi) returns the leaf node corresponding to attribute αi. attr(x) is defined only
if x is a leaf node; it returns the attribute index i of αi associated with x. Access tree T also defines an
ordering between the children of every node, i.e. each child y of a node x are numbered from 1 to numx.
index(y) returns this number associated with the node y. Let Sx denote a set [1, . . . ,numx]. Finally, let
childi(x) return the ith child of node x.

We also define ΓTγ as a set of minimum subsets of γ that satisfies Tγ . By “minimum”, we mean
the subset cannot become smaller while still satisfying Tγ . For example, in Fig. 2, ΓTγ = {{1,2},{3}}
where 1,2,3 is the index of attribute last name,birth date,blood type respectively. Here ΓTγ means
that either {last name,birth date} or {blood type} can satisfy Tγ . We can determine ΓTγ in a down-top
manner. For each leaf node, define Sx = {attr(x)}. For any other node x, Sx = ∪i∈SxSchildi(x) if kx = 1.
Otherwise if kx > 1, Sx = {x′ : x′ = ∪1≤i≤kxx

′
i,∀x′i ∈ Schildi(x)}. And the resulting Sr at root node r is ΓTγ .

For γ ′ ∈ ΓTγ , we define Tγ ′ as a subgraph of Tγ with only attributes in γ ′ as leaves. For example, in Fig. 2,
if γ ′ = {1,2}, then Tγ ′ would be the left-hand subtree of the root node. Note in Tγ ′ each non-leaf node
x’s kx should be its number of children, i.e., a conjunctive gate, since γ ′ is a minimum satisfiable subset.

4.3 Homomorphic Encryption

Here, we elect to use the well-known additively homomorphic public key encryption scheme–Paillier
encryption [28] which is easy to implement and amend for proofs of knowledge. Let n denote an RSA
modulus, h = n+ 1 and g be an element of order ϕ(n) mod n2. Let sk = {ϕ(n)} and pk = {g,n}.
Encryption is defined as c = Enchom

pk (m) = hmgr mod n2 where r ∈R Zϕ(n). Corresponding decryption is

defined as: Dechom
sk (c) =

[
(cϕ(n) mod n2)−1

n ·ϕ(n)−1 mod N
]

. Note that, to encrypt, we use hmgr instead of

standard hmrn. If the order of g has no factor of n and is greater than 2, gr is a random element from the
same subgroup as rn. Therefore hmgr has the same distribution as hmrn. The purpose of using the former
is to facilitate zero-knowledge proofs.

4.4 Zero-Knowledge Proof

Our scheme uses various protocols to prove knowledge of, and relations among, discrete logarithms. To
describe these protocols, we use the notation introduced by Camenisch and Stadler [13]. For instance,
PK{(a,b,c) : y = gahb∧y= gahc∧ s≤ b≤ t} denotes a zero-knowledge proof of knowledge of integers
a,b,c such that y = gahb and y = gahc holds and s ≤ b ≤ t. The convention is that everything inside
parentheses is only known to the prover, while all other parameters are known to both prover and verifier.
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The technique for a proof of knowledge of a representation of an element y∈G with respect to several
bases z1, . . . ,zv ∈ G, i.e., PK{(a1, · · · ,av) : y = za1

1 · · ·zav
v }, is presented in [16]. A proof of equality

of discrete logarithms of two group elements y1,y2 ∈ G to bases g ∈ G and h ∈ G, respectively, i.e.,
PK{(a) : y1 = ga∧y2 = ha}, is given in [15]. Generalizations to proving equalities among representations
of elements y1, . . . ,yv ∈ G to bases g1, . . . ,gv ∈ G are straightforward [13]. Boudot [11] demonstrates
proof of knowledge of a discrete logarithm of y ∈ G with respect to g ∈ G such that logg y lies in integer
interval [s, t], i.e., PK{(a) : y = ga∧a ∈ [s, t]} under the strong RSA assumption and the assumption that
the prover does not know the factorization of the RSA modulus.

4.5 Bilinear map

We now review some general notions about efficiently computable bilinear maps.
Let G1 and G2 be two multiplicative cyclic groups of prime order q. Let g be a generator of G1 and

ê be a bilinear map, ê : G1×G1→G2. The bilinear map ê has the following properties:

1. Bilinearity: for all u,v ∈G1 and a,b ∈ Zp, we have ê(ua,vb) = ê(u,v)ab

2. Non-degeneracy: ê(g,g) ̸= 1.

We say that G1 is a bilinear group if the group operation in G1 and the bilinear map ê :G1×G1→G2
are both efficiently computable.

4.6 Cryptographic Assumption

Our scheme’s security is based on the decisional bilinear Diffie-Hellman (BDH) assumption [7] and
Boneh-Boyen Hidden Strong Diffie-Hellman (BB-HSDH) assumption [8].

Assumption 1. (Decisional Bilinear Diffie-Hellman (BDH) assumption.) Let a,b,c,z ∈ Zq be chosen
at random and g be a generator of G1. We say that the BDH problem is hard if for all p.p.t. adversariesA
there exists a negligible function negl such that |Pr[A(ga,gb,gc, ê(g,g)abc)= 1]−Pr[A(ga,gb,gc, ê(g,g)z)=
1]| ≤ negl(n) where in each case the probabilities are taken over the random choice of the generator g,
the random choice of a,b,c,z in Zq and the random bits consumed by A.

Assumption 2. (Boneh-Boyen Hidden Strong Diffie-Hellman (BB-HSDH)). Let x,c1, · · ·ct ∈R Zq. On
input g,gx,u ∈G1,h,hx ∈G2 and the tuple {g1/(x+cl),cl}l=1...t , it is computationally infeasible to output
a new tuple (g1/(x+c),hc,uc).

5 Scheme

We present our scheme Π which consists of following algorithms. The full security proof is given in
Appx A.

Setup(1k): Run G(1k) to obtain (q,G1,G2, ê,n,g,n,g,h). n is an RSA modulus larger than 2kq2 with
generator g. Let skDO = ϕ(n) and pkDO = {g,n}. In other words, only DO knows the factors of n. n
is another RSA modulus with generator g and h. Note neither factors of n nor loggh is known to any
party. Pick secret parameters t, t ′,y,y′ which are only known to DO. Make Y = ê(g,g)y, Y ′ = ê(g,g)y′ ,
T = gt , T ′ = gt ′ , et = Enchom

pkDO
(t), et ′ = Enchom

pkDO
(t ′), and πs proving et and et ′ are well formed. Output

params← (Y,Y ′,T,T ′,et ,et ′ ,πs, pkDO, pkCA,n,g,h), mskDO← (t, t ′,y,y′,skDO).

13



Privacy-preserving Cloud Database Querying Lu, and Tsudik

1. Setup algorithm picks r,r′ ∈R Zϕn , computes et = htgr, et ′ = ht ′gr′ and

πs =PK
{(

t, t ′,r,r′,r,r′
)

:
et = htgr mod n2∧ ct = gthr mod n∧ t ∈ {0,1}lq+lϕ+lH+2∧
et ′ = ht ′gr′ mod n2∧ ct ′ = gt ′hr

′
mod n∧ t ′ ∈ {0,1}lq+lϕ+lH+2

}
which is instantiated as follows:

(a) Pick random rt ,rt ′ ∈R {0,1}lq+lϕ+lH , rr,rr′ ∈R Zϕ(n), rr,rr′ ∈R {0,1}lr+lϕ+lH and compute
ẽt = hrtgrr mod n2, c̃t = grthrr mod n, ẽt ′ = hrt′ grr′ mod n2, c̃t ′ = grt′hrr′ mod n

(b) Compute c =H(g||h||g||h||et ||ct ||ẽt ||c̃t ||et ′ ||ct ′ ||ẽt ′ ||c̃t ′).

(c) Make πs = (c,st ,sr,sr,st ′ ,sr′ ,sr′) where st = rt + c · t, sr = rr + c · r, sr = rr+ c · r, st ′ =
rt ′ + c · t ′, sr′ = rr′ + c · r′, sr′ = rr′ + c · r′.

Setup publishes et ,et ′ ,πs.

2. U verifies πs by

(a) computing êt = e−c
t hstgsr , ĉt = c−c

t gsthsr , êt ′ = e−c
t ′ h

st′ gsr′ , ĉt ′ = c−c
t ′ g

st′hsr′ .

(b) checking if c ?
=H((g||h||g||h||et ||ct ||êt ||ĉt ||et ′ ||ct ′ ||êt ′ ||ĉt ′)

(c) and checking if st ,st ′
?
∈ {0,1}lq+lϕ+lH+1

U receives {{rvi ,r
′
vi
,cvi ,c

′
vi
}i∈γ ,σ} from CA.

U chooses ri,1,r′i,1 ∈R Zq, rH,rH′ ∈R Zϕ(n) and ri,2,r′i,2 ∈R {0,1, . . . ,2lq+lϕ },
computes ei = ((et ·hH(i,vi)grH)ri,1) ·hri,2qgrq,i mod n2,e′i = ((et ′ ·hH

′(i,vi)grH′ )r′i,1) ·hr′i,2qgr′q,i mod
n2,∀i ∈ γ and

πc =PK



 {H(i,vi),H′(i,vi),H̄i,H̄′i}i∈γ
{ri,1,r′i,1,ri,2,r′i,2}i∈γ
{r̄i, r̄′i,rvi ,ui,u′i}i∈γ

 :

{ei = eri,1
t ·hH̄i · (hq)ri,2 ·gr̄i mod n2

∧e′i = e
r′i,1
t ′ ·h

H̄′i · (hq)r′i,2 ·gr̄′i mod n2

∧cvi = gH(i,vi)hrvi mod n∧1 = cri,1
vi g
−H̄ihui mod n

∧c′vi
= gH

′(i,vi)hr′vi mod n∧1 = c′vi

r′i,1g−H̄
′
ihu′i mod n

∧ri,1,r′i,1 ∈ {0,1}lq+lϕ+lH+2

∧ri,2,r′i,2 ∈ {0,1}lq+2lϕ+lH+2}i∈γ


which is instantiated as follows:

(a) U picks random {rri,1 ,rr′i,1
∈R {0,1}lq+lϕ+lH ,rri,2 ,rr′i,2

∈R {0,1}lq+2lϕ+lH ,

rH̄i
,rH̄′i ∈R {0,1}lq+lϕ+2lH ,rH(i,vi),rH′(i,vi) ∈R {0,1}lϕ+2lH ,rr̄i ∈R {0,1}lr̄i+lϕ+lH

rr̄′i
∈R {0,1}lr̄′i

+lϕ+lH
,rrvi

,rr′vi
∈R {0,1}lrvi

+lϕ+lH ,rui ∈R {0,1}lui+lϕ+lH ,ru′i
∈R

{0,1}lu′i
+lϕ+lH}i∈γ

and computes {ẽi = e
rri,1
t ·hrH̄i ·(hq)

rri,2 ·grr̄i mod n2, ẽ′i = e
rr′i,1
t ′ ·h

rH̄′i ·(hq)
rr′i,2 ·grr̄′i mod n2,

c̃vi = grH(i,vi)hrrvi mod n, c̃′vi
= g

rH′(i,vi)h
rr′vi mod n, Õi,1 = c

rri,1
vi (1/g)rH̄ihrui mod n,

Õi,2 = c′vi

rr′i,1 (1/g)
rH̄′ih

ru′i mod n}i∈γ

(b) Compute c=H(g||h||g||h||V(ei)||V(e′i)||V(cvi)||V(ẽi)||V(ẽ′i)||V(c̃vi)||V(c̃′vi
)||V(Õi,1)||V(Õi,2))

where V(xi) = xk1 || · · · ||xk j || · · · ||xk|γ| in which k j ∈ γ

Figure 3: The AuthorizedBlindExtract protocol

Encrypt(DO(params,mskDO,m)): To encrypt a record m = vΩ = {v1, . . . ,vw}, DO chooses random
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2. (c) Make πc = (c,{sri,1 ,sr′i,1
,sri,2 ,sr′i,2

,sH̄i
,sH̄′i ,sH(i,vi),sH′(i,vi),sr̄i ,sr̄′i

,srvi
,sr′vi

,sui ,su′i
}i∈γ)

where
{sri,1 = rri,1 + c · ri,1,sr′i,1

= rr′i,1
+ c · r′i,1,sri,2 = rri,2 + c · ri,2,sr′i,2

= rr′i,2
+ c · r′i,2,sH̄i

=

rH̄i
+ c · H̄i,sH̄′i = rH̄′i + c · H̄′i,sH(i,vi) = rH(i,vi) + c · H(i,vi),sH′(i,vi) = rH′(i,vi) + c ·

H′(i,vi),sr̄i = rr̄i + c · r̄i,sr̄′i
= rr̄′i

+ c · r̄′i,srvi
= rrvi

+ c · rvi ,sr′vi
= rr′vi

+ c · r′vi
,sui =

rui + c ·ui,su′i
= ru′i

+ c ·u′i}i∈γ .

U forwards {ei,e′i}i∈γ , Tγ , πc, σ to DO

3. DO verifies σ on Tγ using pkCA and verifies πc by

(a) computing {êi = e−c
i e

sri,1
t · hsH̄i (hq)

sri,2 · gsr̄i , ê′i = e′i
−ce

sr′i,1
t ′i
· hsH̄′i · (hq)

sr′i,2 · gsr̄′i , ĉvi =

c−c
vi
gsH(i,vi)hsrvi ,

ĉ′vi
= c′vi

−cg
sH′(i,vi)h

sr′vi , Ôi,1 = O−c
i,1 c

sri,1
vi (1/g)sH̄ihsui , Ôi,2 = O−c

i,2 c′vi

sr′i,1 (1/g)
sH̄′ih

su′i}i∈γ

(b) checking if c ?
= H(g||h||g||h||V(ei)||V(e′i)||V(cvi)||V(c′vi

)||V(êi)||V(ê′i)||V(ĉvi)||V(Ôi,1)

||V(Ôi,2)) where V(xi) = xk1 || · · · ||xk j || · · · ||xk|γ| in which k j ∈ γ .

(c) and checking if {sri,1 ,sr′i,1

?
∈ {0,1}lq+lϕ+lH+1}i∈γ , {sri,2 ,sr′i,2

?
∈ {0,1}lq+2lϕ+lH+1}i∈γ

DO starts to define a polynomial Qx(·) of degree kx− 1 for each node x in Tγ in a top-down
manner. For the root node r, it sets Qr(0) = y and kr− 1 other points of Qr randomly to fully
define Qr. For any other node x, set Qx(0) = Qparent(x)(index(x)) and choose kx−1 other points
randomly to completely define Qx. DO defines another polynomial Q′x(·) in the same way as
Qx(·) except that Q′x(0) = y′. For each i ∈ γ , DO decrypts di = Dechom

skDO
(ei),d′i = Dechom

skDO
(e′i)

and sends ai = gQnode(αi)
(0)/di and a′i = g

Q′node(αi)
(0)/di to U .

4. U computes decryption key ski = ai
ri,1 = gQnode(αi)

(0)/(t+H(i,vi)) and search token tki = a′i
r′i,1 =

g
Q′node(αi)

(0)/(t+H(i,vi)) for i ∈ γ .
U verifies ski-s as follows

(a) compute pi = e(ski,T ·gH(i,vi)) = e(g,g)Qnode(αi)
(0) for all i ∈ γ .

(b) it starts to compute a value qx for each node x in Tγ in a down-top manner starting from
leaves. For each leaf node x in Tγ , its qx is set to pattr(x). For a non-leaf node x, qx is
dependent on kx. If kx = 1, user first verifies that each qchildi(x), for all i ∈ Sx, is the same.
Then it sets qx = qchildi(x), for arbitrary i ∈ Sx. If kx > 1, it sets qx = ∏i∈Sx(qchildi(x))

∆i,Sx .

(c) The procedure continues until it reaches the root node r. Finally, the user checks whether
qr

?
= Y .

U verifies tki as it does ski except that qr should be equal to Y ′ this time.

Figure 3 cont.: The AuthorizedBlindExtract protocol

values s,s′ ∈R Zq and outputs the ciphertext as:

C =
(
E,E ′,{Ei,E ′i}i∈Ω

)
.

where E = Encsym
Y s (m), E ′ = Y ′s

′
, Ei = gs·(t+H(i,vi)) and E ′i = gs′·(t ′+H′(i,vi)).

Extract(U(params,Tγ ,vγ),DO(params,mskDO)): This is an interactive protocol between U and DO.

1. U chooses an attribute set γ and constructs Tγ and vγ to fully define a conditional expression it

15



Privacy-preserving Cloud Database Querying Lu, and Tsudik

wants to query. Then it submits Tγ and vγ to DO.

2. DO defines a polynomial Qx(·) of degree kx−1 for each node x in Tγ in a top-down manner. For
the root node r, it sets Qr(0) = y and kr−1 other points of Qr randomly to fully define Qr(·). For
any other node x, it sets Qx(0) = Qparent(x)(index(x)) and chooses kx− 1 other points randomly
to completely define Qx(·). Then it outputs decryption key sk(Tγ ,vγ ) = {{ski}i∈γ ,Tγ ,vγ} where

ski = gQnode(αi)(0)/(t+H(i,vi)). DO defines Q′x(·) in the same way as Qx(·) except that Q′r(0) = y′.
And it outputs search token tk(Tγ ,vγ ) = {{tki}i∈γ ,Tγ} where tki = gQ′node(αi)

(0)/(t ′+H′(i,vi)). Last, DO
sends tk(Tγ ,vγ ) and sk(Tγ ,vγ ) to U .

Test(S(params, tk(Tγ ,vγ ),C)): To test whether an encrypted record C = Encrypt(mskDO,v′Ω) matches a

search token tk(Tγ ,vγ ) = {{tki = gQ′node(αi)
(0)/(t ′+H′(i,vi))}i∈γ ,Tγ}, it first calculates ΓTγ from Tγ . The search

operation starts from the first γ ′ ∈ ΓTγ . Let i = attr(x). For each node x in Tγ ′ , it computes a value zx

in a down-top manner. For each leaf node x in Tγ ′ , S computes zx = ê(tki,E ′i ). We use v′i to denote the
value embedded in E ′i . Note if vi = v′i, zx = ê(gQ′x(0)/(t

′+H′(i,vi)),gs′·(t ′+H′(i,v′i))) = ê(g,g)s′·Q′x(0). For each
non-leaf node x, it sets zx = ∏i∈Sx(zchildi(x))

∆i,Sx . Note if {vi = v′i}i∈γ ′ , zx = ∏i∈Sx(ê(g,g))
s′·Q′childi(x)

(0)·∆i,Sx

= ∏i∈Sx(ê(g,g))
s′·Q′x(i)·∆i,Sx = ê(g,g)s′·Q′x(0). The procedure continues until it reaches the root node r. If

zr = E ′, S outputs ’yes’. Otherwise, it continues to test the next γ ′. If all γ ′s do not meet the criteria, it
outputs ’no’.

Decrypt(U(params, tk(Tγ ,vγ ),sk(Tγ ,vγ ),C)): The decryption algorithm first identifies γ ′ satisfying tk(Tγ ,vγ )

as Test algorithm does. Note this step can be omitted if γ ′ is provided as input after it is identified by Test.
Then it follows a down-top manner in Tγ ′ . Let i = attr(x). Then for each leaf node x ∈ Tγ ′ , it computes
zx = ê(ski,Ei). Note since vi equals to v′i, zx = ê(gQx(0)/(ti+t·vi),gs(ti+t·v′i))= ê(g,g)s·Qx(0). For non-leaf node
x ∈ Tγ ′ , it computes zx = ∏i∈Sx(zchildi(x))

∆i,Sx = ∏i∈Sx(ê(g,g))
s·Qchildi(x)(0)·∆i,Sx = ∏i∈Sx(ê(g,g))

s·Qx(i)·∆i,Sx =

ê(g,g)s·Qx(0). The procedure continues until it reaches root r and zr = ê(g,g)s·Qr(0) = ê(g,g)s·y = Y s is
computed. Then user recovers m = Decsym

H(Y s)(E).

BlindExtract(U(params,Tγ ,vγ),DO(params,mskDO)):

1. U first verifies πs. If πs passes verification, then the user chooses ri,1,r′i,1 ∈R Zq and ri,2,r′i,2 ∈R

[0, . . . ,2kq] and computes

ei = ((et ⊕Enchom
pks

(H(i,vi)))⊗ ri,1)⊕Enchom
pks

(ri,2 ·q),∀i ∈ γ

e′i = ((et ′⊕Enchom
pks

(H′(i,vi)))⊗ r′i,1)⊕Enchom
pks

(r′i,2 ·q),∀i ∈ γ

It also computes a zero-knowledge proof πc proving ei,e′i are well formed and ri,1,ri,2,r′i,1,r
′
i,2 are

in appropriate interval. Then it sends {ei,e′i}i∈γ , Tγ , πc to DO.

2. DO verifies πc to make sure ei,e′i,ri,1,r′i,1,ri,2,r′i,2 are correctly embedded. Then DO starts to
define a polynomial Qx(·) of degree kx− 1 for each node x in Tγ in a top-down manner. For the
root node r, it sets Qr(0) = y and kr − 1 other points of Qr randomly to fully define Qr. For
any other node x, set Qx(0) = Qparent(x)(index(x)) and choose kx− 1 other points randomly to
completely define Qx. DO defines another polynomial Q′x(·) in the same way as Qx(·) except
that Q′x(0) = y′. Next, for each i ∈ γ , DO decrypts di = Dechom

skDO
(ei),d′i = Dechom

skDO
(e′i) and sends

ai = gQnode(αi)(0)/di and a′i = gQ′node(αi)
(0)/d′i to U .
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3. U computes ski = ai
ri,1 = gQnode(αi)(0)/(t+H(i,vi)) and tki = a′i

r′i,1 = gQ′node(αi)
(0)/(t ′+H′(i,vi)) for i∈ γ . Then

U checks the validity of skis. To do that, it computes pi = e(ski,T ·gH(i,vi)) = e(g,g)Qnode(αi)(0) for
all i ∈ γ . After that, it starts to compute a value qx for each node x in Tγ in a down-top manner
starting from leaves. For each leaf node x in Tγ , its qx is set to pattr(x). For a non-leaf node x,
qx is dependent on kx. If kx = 1, user first verifies that each qchildi(x), for all i ∈ Sx, is the same.
Then it sets qx = qchildi(x), for arbitrary i ∈ Sx. If kx > 1, it sets qx = ∏i∈Sx(qchildi(x))

∆i,Sx . The

procedure continues until it reaches the root node r. Finally, the user checks whether qr
?
= Y . If

any above verification fails, U quits. U checks tki in the same way as it does ski except that qr

should be equal to Y ′ this time. U outputs decryption key sk(Tγ ,vγ ) = {{ski}i∈γ ,Tγ ,vγ} and search
token tk(Tγ ,vγ ) = {{tki}i∈γ ,Tγ}.

Authorize(U(params,Tγ ,vγ),CA(params,skCA)): U submits Tγ ,vγ to CA. CA verifies that U has the
right to search for the conditional expression defined by (Tγ ,vγ). If it approves user request, then
CA, on U’s behalf, makes pedersen commitments cvi , c′vi

on each vi ∈ vγ , i.e. cvi = gH(i,vi)hrvi and
c′vi

= gH
′(i,vi)hr′vi . Next, CA maps Tγ to a Merkle hash tree. Specifically, it computes a hash value

for each node x in Tγ . For each leaf node x, its hash value is hx = H(kx). For non-leaf node, its
hash value is defined as the hash of concatenations of its kx and its children’s hash values, i.e. hx =
H(kx||hchild1(x)|| · · · ||hchildnumx (x)). Let hr denote the hash value for the root node r. CA issues a signature
σ on hr and {cvi ,c

′
vi
}i∈γ , i.e. σ = SignskCA(hr,{cvi ,c

′
vi
}i∈γ), and sends {{rvi ,cvi ,r

′
vi
,c′vi
}i∈γ ,σ} back to U .

AuthorizedBlindExtract(U(params,Tγ ,vγ ,ψ,open,σ),DO(params,mskDO)): This protocol is detail-
ed in Fig. 3. Here ψ = {cvi ,c

′
vi
}i∈γ and open = {rvi ,r

′
vi
}i∈γ . The protocol basically follows the Blin-

dExtract protocol except that U needs to prove statements about commitments using zero-knowledge
proof.

6 Performance Analysis

Before presenting performance analysis, we point out two possible improvements to the scheme. First, in
Test algorithm, if the identified matching set γ ′ is sent to U , then Decrypt algorithm does not need search
token to seek γ ′ again. Second, as pointed out in [20], instead of exponentiating at each level during the
computation of zx in Decrypt, for each leaf node in γ ′, we can keep track of which Lagrange coefficient
is multiplied with each other. Using this, we can compute the final exponent fx for each leaf node x ∈ Tγ ′

by doing multiplication in Zq. Now zr is simply ∏i∈γ ′ ê(ski,Ei)
fnode(αi) . The same optimization applies to

Test algorithm.
We now consider the efficiency of the scheme. The Encrypt algorithm takes 2n group exponentia-

tions in G1. The Extract algorithm takes 2 · |γ| group exponentiations in G1. In BlindExtract algorithm,
DO spends 20 · |γ| group exponentiations in G1. U spends 28 · |γ| group exponentiations in G1 plus some
verification time dependent on access tree. The Test algorithm’s performance depends on the access tree
Tγ . In conjunction-only case, it involves 1 test of |γ| pairing and |γ| exponentiation in G2. In disjunction-
only case, it involves |γ| tests of 1 pairing operation. Compared to |γ| pairing overhead in [10,22,32], our
scheme has similar overhead while supporting more flexible queries. The optimized Decrypt algorithm
takes |γ ′| pairing and |γ ′| group exponentiations in G2.

7 Performance Evaluation

We implemented the proposed scheme in C++ using PBC (ver. 0.57) [24] and OpenSSL (ver. 1.0.0) [1]
library. This section discusses the performance of each function in our scheme. All benchmarks were
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Figure 4: Performance of Encryp, Extract, De-
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performed on a Ubuntu 9.10 desktop platform with Intel Core i7-920 (2.66GHz and 8MB cache) and
6GB RAM.

Since performance of each function only depends on the access tree, we do not consider the perfor-
mance impact of the contents associated with leaf nodes. We use a random access tree (in all tests) that is
generated as follows. First we fix the number of leaves, nleaves. Then a random tree height nheight between
1 and 5 is chosen. The node degree is computed as ndegree = ⌈n

1/nleaves
leaves ⌉. After nleaves,nheight ,ndegree is

determined, the random tree is constructed in a down-top manner. At depth l, one parent node is con-
structed for every ndegree nodes at depth l +1. If less than ndegree nodes are left at depth l +1, one parent
node is constructed for these remaining nodes. The procedure continues until only one parent (root) can
be constructed. For simplicity, we assume the total number of attributes w = |γ|= nleaves.

First we test the speed of Encrypt. Fig. 4 (Encryption Speed line) shows the overhead to compute
Y s,E ′,{Ei,E ′i}i∈Ω versus the number of attributes |γ|. As we can see, its overhead increases linearly
with |γ|. Fig. 5 shows the performance of symmetric encryption, which is needed to compute E =
Encsym

H(Y s)(m).
Extract and BlindExtract performance is also shown in Fig. 4. In this test, the threshold gates in

the access tree are chosen randomly. The overhead of Extract (Extraction (Data Owner) line) is solely
at DO side and it increases linearly with |γ|. The overhead of BlindExtract is at both U side and DO
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side. The overhead at DO side (Blind Extraction (Data Owner) line) is almost nine times that of normal
extraction. The overhead at U side (Blind Extraction (User) line) doubles that at DO side.

To test Decrypt, we assume γ ′ = γ , i.e., all attributes should be involved in the decryption. Since all
threshold gates in Tγ ′ should be conjunctive gates, we make them conjunctive in the random access tree Tγ
as well. Fig. 4 (Decryption Speed line) shows the speed to recover Y s. We find that decryption overhead
increases linearly with |γ| and it is even cheaper than extraction. The reason is because pairing operation
and exponentiation in G2 is faster than exponentiation in G1

1. Fig. 6 shows the speed of computing fx

for all leaf node x, which is necessary for the optimization of decryption. Its speed is almost linear with
the product of |γ|, tree height and tree degree. Note this part of operation can be conducted offline and
only needs to be computed once for one type of access tree. The performance of Decsym

H(Y s)(E) is same as
Encsym

H(Y s)(m) as shown in Fig. 5.
As to Test performance, it highly depends on the access tree. During the following test, the per-

formance is recorded in the worst case, i.e. all possible subtrees Tγ ′ of Tγ are tried. Fig. 4 shows the
conjunction-only Test and disjunction-only Test performance. As we can see, they all increase linearly
with |γ|. The reason why they are almost the same is because conjunction-only Test has 1 test involving
|γ| pairing and |γ| exponentiation in G2 while disjunction-only Test has |γ| tests involving 1 pairing. To
further test Test operation, we use random access tree. We restrict |γ| to be 10, which is usually enough
for normal query, and set each threshold gate in the tree randomly. Fig. 7 shows the results of 100 test
cases. As we can see the maximum Test time is 170ms and the average Test time is 85ms. In cloud
computing scenario, multiple Test operations can run simultaneously and therefore spending average
85ms on each record is acceptable.

8 Limitation

The proposed scheme has some limitation and it should be considered in future work. First, it only
supports equality testing. Practical privacy-preserving comparison is not available yet. Second, it only
hides concrete value in the conditional expression and the structure Tγ is revealed to the adversary. Third,
join operations between two tables are not supported. Fourth, if the set of possible attribute values in γ is
small, the adversary can always try to encrypt something under all possible values and run Test over the
encryptions to see if there is a match. This would reveal vγ within tk(Tγ ,vγ ). However, the complexity of
such brute force attacks against this intrinsic weakness of public key-based searchable encryption, grows
exponentially with |γ|. Fifth, DO is required to be online to help U extract search tokens and decryption
keys. However, we expect that this functionality can be finished by some secure hardware that can be
safely installed at U side without compromising mskDO.

9 Conclusion

This paper provides an overview of privacy challenges facing cloud storage and develops a novel en-
cryption scheme for coping with these challenges. The scheme hides the plaintext of database and user’s
query content from the cloud server. It allows data owner to do content-level fine-grained access control
by issuing users appropriate search tokens and decryption keys. The scheme also supports blind retrieval
of search tokens and decryption keys in the sense that neither data owner nor cloud server learns the
query content. The additional feature of user input authorization by CA can also be supported. Our
evaluation shows that the proposed scheme’s performance falls within the acceptable range.

1In our benchmark of Type A pairing family in [24], one exponentiation in G1 takes 1.9 ms, one exponentiation in G2 takes
0.18 ms while one group pairing takes 1.4 ms.
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A Security Proof

The following three lemmas establish the security of our scheme.

Lemma 1. The scheme Π is Selective-Set Secure (Def. 1) under the BDH assumption.

Proof. We prove our scheme is Selective-Set Secure through a series of game reductions. Suppose
(E,E ′,{Ei,E ′i}i∈Ω) is an encryption of message m. We use Game0 to denote the original scheme. In
Game1, we replace t +H(i,vi) with a random number. In Game2, we replace E and each Ei with inde-
pendent random numbers from Game1. In Game3, we replace E ′ and each E ′i with independent random
numbers from Game2. We use symbol Gamei ≈ Gamei+1 to denote that the view to A in Gamei and
Gamei+1 are indistinguishable. Our goal is to show that Game0 ≈Game1 ≈Game2 ≈Game3 if A never
queriesOExtract(params,mskDO,Tγ ,vγ) such that Tγ(vγ ,m) = 1. The following argument establishes the
indistinguishability between each two immediate games.

Game0 ≈ Game1 : It is obvious that Game0 and Game1 are indistinguishable becauseH(i,vi) can always
return random values for each random oracle query.

Game1 ≈ Game2 : In order to show that Game1 and Game2 are indistinguishable, we need to rely on
BDH assumption. Given a BDH challenge (A,B,C,Z), the reducation algorithm sets Y = ê(A,B) =
ê(g,g)ab and E = Encsym

Z (m). For each i ∈ Ω, it picks ri and sets Ei = Cri . Let s = c so we have
Y s = (ê(g,g)ab)c = ê(g,g)abc. When (A,B,C,Z) = (ga,gb,gc, ê(g,g)abc), we have Y s = Z and
Ei = (gri)s. Therefore the view to A in this case is equivalent to Game1. When (A,B,C,Z) =
(ga,gb,gc, ê(g,g)z), E and Ei become independent random values. Therefore the view to A in this
case is equivalent to Game2.
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One remaining part for the above argument is to show that the reducation algorithm is able to
answer OExtract(params,mskDO,Tγ ,vγ) when Tγ(vγ ,m) ̸= 1. Since E ′,{E ′i}i∈Ω are not replaced
in Game1, tkTγ ,vγ can still be generated following normal operations in Extract(U(params,Tγ ,vγ),
DO(params,mskDO)). To generate skTγ ,vγ , reduction needs to assign a polynomial Qx of degree
dx = kx−1 for every node in Tγ such that Qr(0) = y = ab. We make Qx(·) = b ·qx(·) and start to
define qx(·) instead. Note qr(0) = a. We first define the following two procedures: CoKnown and
CoUnknown.

CoKnown(x,λx) This procedure sets up the polynomial for the nodes of an access subtree with
root node x and qx(0) = λx. Note, in this procedure, λx is known.
It first sets up a polynomial qx of degree dx for the root node x. It sets qx(0) = λx and then
sets the rest of the points randomly to completely fix qx. Now it sets polynomials for each
child node x′ of x by calling the procedure CoKnown(x′,qx(index(x′))). Notice that in this
way, qx′(0) = qx(index(x′)) for each child node x′ of x.

CoUnknown(x,λx) This procedure sets up the polynomials for the nodes of an access subtree
with root node x. Note, in this procedure, λx is unknown but gλx is known. Therefore this
procedure makes gqx(0) = gλx .
It first defines a polynomial qx of degree dx for the root node x such that gqx(0) = gλx . Because
the access subtree is unsatisfied, no more than dx children of x are satisfied. Let hx ≤ dx be
the number of satisfied children of x. For each satisfied child x′ of x, the procedure chooses a
random point λx′ ∈ Zp and sets qx(index(x′)) = λx′ . It then fixes the remaining dx−hx points
of qx randomly to completely define qx. Now the algorithm recursively defines polynomials
for the rest of the nodes in the tree as follows. For each child node x′ of x, the algorithm calls:

CoKnown(x′,qx(index(x′))) if x′ is a satisfied node. Notice that qx(index(x′)) is known in
this case.

CoUnknown(x′,qx(index(x′)) if x′ is not a satisfied node. Notice that only gqx(index(x′)) can
be obtained by interpolation as only gqx(0) is known in this case.

To define qx(·) for each node x of Tγ , reduction runs CoUnknown(r,a) where r is the root node of
Tγ and ga = A. Note, for each leaf node x, qx(0) is known if x is satisfied and gqx(0) is known if x is
unsatisfied. Now we define Qx(·) = b ·qx(·). Therefore, The key corresponding to a satisfied node

is Dx = g
Qx(0)

ri = g
bqx(0)

ri = B
qx(0)

ri . For unsatisfied node, we choose a random number βi ∈ Zp and

make ri = bβi. Then the key corresponding to an unsatisfied node is Dx = g
Qx(0)

ri = g
bqx(0)

bβi = g
qx(0)

βi .
This finishes the procedure for answering OExtract(params,mskDO,Tγ ,vγ).

In sum, differentiating Game1 from Game2 is equivalent to breaking BDH assumption and thus we
have Game1 and Game2 are indistinguishable.

Game2 ≈ Game3 : This reduction is similar to the reduction from Game1 to Game2 except that E ′,{E ′i}
are replaced this time.

Going back to the Def. 1, since c∗ can be replaced with random values without presenting distin-
guishable views to A as long as A not querying OExtract(params,mskDO,Tγ ,vγ) with Tγ(vγ ,m1) = 1 or
Tγ(vγ ,m2) = 1. Therefore the advantage of A in winning the Selective-Set Secure game is negligible.

Lemma 2. BlindExtract is a leak-free (Def. 2) protocol.
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Proof. To show that BlindExtract is leak-free. We should construct a simulator that talks to a trusted
party to obtain {ski, tki}i∈γ and simulates to the malicious user. The simulator is constructed as follows:

1. Simulator runs Setup(1k) and publishes et as Enchom
pkDO

(0), et ′ as Enchom
pkDO

(0).

2. Simulator receives {ei,e′i}i∈γ ,Tγ ,πc from A and verifies πc to ensure {ei,e′i}i∈γ are computed
correctly.

3. Simulator runs the zero-knowledge proof extraction algorithm and extracts {H(i,vi),H′(i,vi),ri,1,
r′i,1}i∈γ from πc.

4. Simulator submits Tγ ,{H(i,vi),H′(i,vi)}i∈γ to a trusted party which honestly computes and re-
turns {ski, tki}i∈γ to the simulator.

5. Simulator returns {sk1/ri,1
i , tk

1/r′i,1
i }i∈γ to A.

Now we need to show that the view to A when talking to this simulator is indistinguishable from the
view in the real game. We prove this through a series of games.

Game0 : This is essentially the real game.

Game1 : In this game, A interacts with a simulator S′ that behaves the same as the final simulator from
step 3 and behaves as the real protocol in step 1 and 2.

Game2 : This is essentially the final simulator. It only differs from the Game1 in that et ,et ′ are generated
by encrypting 0.

Game0 is indistinguishable from Game1 due to the soundness and extraction property of the zero-
knowledge proof system. Game1 is indistinguishable from Game2 due to the semantic security of the
encryption scheme. Therefore the probability that A can differentiate Game0 from Game2 is negligi-
ble.

Lemma 3. BlindExtract is a selective-failure (Def. 3) blind protocol.

Proof. To show that BlindExtract is selective-failure blind, we first show that malicious server cannot
learn useful information during the interaction with the user. We construct a simulator that simulates to
the malicious server. The simulator is constructed as follows:

1. Simulator receives et and et ′ from A and extracts t, t ′ from πs.

2. Simulator chooses a random value {ri,r′i ∈R [0,2kq2]}i∈γ . It computes {ei = Enchom
pkS (ri),e′i =

Enchom
pkS (r

′
i)}i∈γ and sends {ei,e′i}i∈γ to A.

3. Simulator simulates the zero knowledge proof to A.

Now we need to show that the view to A when talking to this simulator is indistinguishable from the
view in the real game. We prove this through a series of games.

Game0 : This is essentially the real game.

Game1 : It is the same as Game0 except that we use zero-knowledge simulation to do the proof in step
3.
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Game2 : This is essentially the final simulator. It only differs from the Game1 in that ei,e′i are gener-
ated by computing {ei = Enchom

pkS (ri),e′i = Enchom
pkS (r

′
i)}i∈γ instead of ei = ((et⊕Enchom

pks
(H(i,vi)))⊗

ri,1)⊕Enchom
pks

(ri,2 ·q), e′i = ((et ′⊕Enchom
pks

(H′(i,vi)))⊗ r′i,1)⊕Enchom
pks

(r′i,2 ·q).

Game1 is indistinguishable from Game0 due to the property of zero-knowledge proof system. Game2
is indistinguishable from Game1 because (t+H(i,vi)) ·ri,1+ri,2 ·q is uniformly distributed over [0,2kq2],
therefore indistinguishable from ri. Similarly, (t ′+H′(i,vi)) · r′i,1 + r′i,2 · q is indistinguishable from r′i.
Therefore the probability that A can differentiate Game0 from Game2 is negligible.

Going back to the Def. 3,A can run one or both of the oracles up to the point {ei,e′i}i∈γ are received.
Based on above argument, ei,e′i is indistinguishable from an encryption of random value distributed over
[0,2kq2], and therefore the distribution of the two oracles are computationally indistinguishable. Now we
show that A can predict the output s0,s1 without further interaction with the oracles:

1. A does the verification of step 3 in BlindExtract. If the verification fails, it records s0 = ⊥.
Otherwise, A records s0 = Extract(U(params,T ,v0),S(params,mskS)).

2. In turn, A records s1 as it does for s0.

3. FinallyA predicts (s0,s1), if both s0 ̸=⊥ and s1 ̸=⊥; A predicts (ε,⊥) if only s1 =⊥; A predicts
(⊥,ε) if only s0 =⊥; and A predicts (⊥,⊥) if s0 = s1 =⊥.

These predictions result in the same distributions as those returned by the oracle, as the same checks
are preformed.
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